Linear Multisecret-Sharing Schemes and Error-Correcting Codes

نویسندگان

  • Cunsheng Ding
  • Tero Laihonen
  • Ari Renvall
چکیده

In this paper a characterization of the general relation between linear multisecret-sharing schemes and error-correcting codes is presented. A bridge between linear multisecret-sharing threshold schemes and maximum distance separable codes is set up. The information hierarchy of linear multisecret-sharing schemes is also established. By making use of the bridge several linear multisecret-sharing threshold schemes based on Reed-Solomon codes, generalized Reed-Solomon codes, Bossen-Yau redundant residue codes are described, which can detect and correct cheatings. The relations between linear multisecret-sharing threshold schemes and some threshold schemes for single-secret sharing are pointed out.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Relation Between Verifiable Secret Sharing Schemes and a Class of Error-Correcting Codes

In this paper we try to shed a new insight on Verifiable Secret Sharing Schemes (VSS). We first define a new “metric” (with slightly different properties than the standard Hamming metric). Using this metric we define a very particular class of codes that we call error-set correcting codes, based on a set of forbidden distances which is a monotone decreasing set. Next we redefine the packing pro...

متن کامل

Linear Secret Sharing Schemes from Error Correcting Codes and Universal Hash Functions

We present a novel method for constructing linear secret sharing schemes (LSSS) from linear error correcting codes and linear universal hash functions in a blackbox way. The main advantage of this new construction is that the privacy property of the resulting secret sharing scheme essentially becomes independent of the code we use, only depending on its rate. This allows us to fully harness the...

متن کامل

Toric Codes, Multiplicative Structure and Decoding

Long linear codes constructed from toric varieties over finite fields, their multiplicative structure and decoding. The main theme is the inherent multiplicative structure on toric codes. The multiplicative structure allows for decoding, resembling the decoding of Reed-Solomon codes and aligns with decoding by error correcting pairs. We have used the multiplicative structure on toric codes to c...

متن کامل

Linear Secret Sharing from Algebraic-Geometric Codes

It is well-known that the linear secret-sharing scheme (LSSS) can be constructed from linear error-correcting codes (Brickell [1], R.J. McEliece and D.V.Sarwate [2],Cramer, el.,[3]). The theory of linear codes from algebraic-geometric curves (algebraic-geometric (AG) codes or geometric Goppa code) has been well-developed since the work of V.Goppa and Tsfasman, Vladut, and Zink( see [17], [18] a...

متن کامل

Near-Optimal Secret Sharing and Error Correcting Codes in AC0

We study the question of minimizing the computational complexity of (robust) secret sharing schemes and error correcting codes. In standard instances of these objects, both encoding and decoding involve linear algebra, and thus cannot be implemented in the class AC. The feasibility of non-trivial secret sharing schemes in AC was recently shown by Bogdanov et al. (Crypto 2016) and that of (local...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. UCS

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1997